Brian K. Johnson, Ph.D.

Chicago, IL 60610 | +49-1516-856-8116 | johnsonrobotics24@gmail.com | johnsonrobotics.com US citizen able to obtain security clearance

SUMMARY

- Successfully led multi-year collaborative robotics projects while mentoring students
- Breadth of experience in control systems, signal processing, machine learning, computer vision, design and fabrication

EXPERIENCE

Postdoctoral Research Scientist

Nov. 2022 – present Stuttgart, Germany

Max Planck Institute for Intelligent Systems

- Led research projects in user-interactive robots and electrostatic soft actuators.
- Developed hardware and software for a visual-haptic device.
- Trained LSTM sequence models for real-time sensor estimation.
- Designed components for a soft robotic lower back exosuit.
- Organized scientific conferences and managed laboratory equipment.

National Science Foundation Graduate Research Fellow

Aug. 2018 - Aug. 2022

Advanced Medical Technologies Laboratory

Boulder, CO

- Implemented real-time discrete control of a 100-actuator, 100-sensor nonlinear interactive soft robot.
- Designed and evaluated novel control algorithms for dynamic multi-object manipulation tasks.
- Integrated resistive, capacitive, and magnetic soft sensors into robots.
- Wrote successful grant proposals to secure research funding totaling \$150k.

Structural Dynamics R&D Intern

Jun. 2017 - Aug. 2018

Sandia National Laboratories, U.S. Dept. of Energy

Albuquerque, NM

- Performed multi-input/multi-output analysis on mechanical vibration tests.
- Developed signal processing algorithms to filter harmonic noise from test data.
- Published an open-access technical report on signal filtering.

Technical Specialist Intern

Jun. - Aug. 2016

Lockheed Martin Rotary and Mission Systems

Owego, NY

- Tested VH-92 helicopter flight hardware under thermal, vibration, and shock environments.
- Analyzed stresses in flight rack panels and stiffeners for FAA certification.

SKILLS

Programming: Python/PyTorch/Pandas, Open-CV, MATLAB, Git, LaTeX, C++, Julia

Software: Microsoft Office, SolidWorks/3D CAD, photo/video editing, vector graphics tools

Equipment: 3D printer, laser cutter, machine mill/lathe, oscilloscope, NI-DAQ, Arduino/Teensy

EDUCATION

Ph.D. Mechanical Engineering University of Colorado Boulder M.S. Mechanical Engineering University of Colorado Boulder P.S. Machanical Engineering Cornell University of Colorado Boulder	Aug. 2022 May 2020
B.S. Mechanical Engineering Cornell University, summa cum laude AWARDS AND GRANTS	Dec. 2017
AWAIDO AID GITANTO	
CU Boulder Beverly Sears Research Grant	2022
National Science Foundation Graduate Research Fellowship National Science Foundation	2019
National Defense Science and Engineering Graduate Fellowship Alternate Awardee; Department of Defense	2019
Dean's Graduate Innovation Assistantship College of Engineering, University of Colorado Boulder	2018
B	

PUBLICATIONS

- A. Shagan*, **B.K. Johnson***, et al., "Transparent electrostatic arrays for surface haptic displays," *in preparation*.
- **B.K. Johnson**, J.S. Humbert, M.E. Rentschler, "An artificial potential field approach for velocity control and object manipulation on shape displays," *under review*.
- **B.K. Johnson***, M. Naris*, et al., "A multifunctional soft robotic shape display with high-speed actuation, sensing, and control," *Nature Communications* **14**, 4516. (2023)
- V. Sundaram*, K. Ly*, **B.K. Johnson**, et al., "Embedded magnetic sensing for feedback control of soft HASEL actuators," *IEEE Transactions on Robotics* **39**, 808-822. (2022)
- K. Ly, N. Kellaris, D. McMorris, **B.K. Johnson**, et al., "Miniaturized circuitry for capacitive self-sensing and closed-loop control of soft electrostatic transducers," *Soft Robotics* **8**, 673-686. (2021)
- **B.K. Johnson**, et al., "Identification and control of a nonlinear soft actuator and sensor system," *IEEE Robotics and Automation Letters* **5**, 3783-3790. (2020)
- **B. Johnson**, J.S. Cap, "Removal of stationary sinusoidal noise from random vibration signals," *Sandia National Lab*, SAND-2018-1900. (2018)

SELECT PRESENTATIONS

"Transparent Actuating Displays for On-Screen Localized Haptic Interactions," *Robotic Materials 2024 Retreat* [Symposium], Berchtesgaden, DE. (Oct. 10, 2024) **Best Presentation award**

"A multifunctional soft robotic shape display with high-speed actuation, sensing, and control," *EuroEAP* 2023 [Poster presentation], Bristol, UK. (Jun. 7, 2023)

"Control and Object Manipulation on Robotic Shape Displays," *Robotics Summer Seminar* [Symposium], University of Colorado Boulder, Colorado, USA. (Jun. 24, 2022)

"Soft Robot System Development Using HASELs," *Center for STEM Learning* [Symposium], University of Colorado Boulder, Colorado, USA, (Nov. 1, 2021)

"Identification and Control of a Nonlinear Soft Actuator and Sensor System," *RoboSoft 2020* [Paper presentation], Yale University, Connecticut, USA. (May 15, 2020)

Personal Interests

^{*}equal contribution